2025/05/24

AIはインフラになる

目次
  1. 気づけばインフラだった
  2. インフラとは何か?
  3. 採用面接の現実
  4. AIを使える人、使えない人
  5. コードを書く速度だけじゃない
  6. まだ間に合う、でも急げ
  7. では、どうすればいいのか?
  8. インフラ化の波に乗れ
  9. 最後に

気づけばインフラだった

今や、ビジネスパーソンにとってインターネットが使えないことは「ハンディキャップ」ではなく、もはや「致命的な欠陥」として扱われる。PCが使えない、Excelなどの表計算ソフトが使えない、そんな人を採用する企業はほとんどないだろう。

AIもまさにそうなろうとしている。

インフラとは何か?

インフラストラクチャー(Infrastructure)という言葉を改めて考えてみよう。社会の基盤となる設備やシステムのことだ。電気、ガス、水道、道路、鉄道、そしてインターネット。これらがない生活なんて、もはや想像できない。

忘れがちなのは、これらのインフラは段階的に「当たり前」になっていったということだ。

電気が普及し始めた頃、「電気なんて贅沢品だ」と言っていた人もいただろう。インターネットが登場した時も、「そんなもの、仕事に必要ない」と言っていた経営者がたくさんいた。でも気がつけば、これらなしには1日も過ごせなくなっている。

採用面接の現実

想像してみてほしい。今、採用面接でこんな人が来たとする。

「私はPCを使えませんが、そろばんがとても得意です。表計算ソフトは使えませんが、紙の伝票計算なら誰よりも速いです!」

この人を採用する会社がどれくらいあるだろうか?おそらく、ほとんどないだろう。なぜなら、PCや表計算ソフトを使える人と使えない人では、生産性に圧倒的な差があるからだ。どんなにそろばんが上手くても、Excelを使える人の生産性の何十分の一にしかならない。

これと全く同じことが、AIについても起こりつつある。

AIを使える人、使えない人

しばらく前から採用面接でAIをどの程度活用できるかを必ず聞くようにしている。

「どんなAIの使い方をしていますか?」

答えは本当に様々だ。

ある候補者は「GitHub CopilotでTDD開発を効率化していて、テストケースの洗い出しとエッジケースの特定をAIに任せています。あと、レガシーコードのリファクタリング時に、デザインパターンの適用提案やパフォーマンス最適化のアドバイスをもらっています。APIドキュメントの自動生成とSwagger定義の品質チェックも活用しています。最近だと、SQLクエリの最適化とインデックス設計の検証もAIに相談しています」と具体的に答えてくれる。 一方で、「ChatGPTでたまにコードレビューをお願いしたり、英語の技術文書を翻訳してもらったりする程度です。基本的な質問しかしていないので、もっと活用できそうだとは思うんですが…」という人もまだまだ多い。

前者と後者、どちらの生産性が高いかは言うまでもない。AIを使いこなしている人は、確実に1.5倍、2倍、時には10倍の生産性を発揮している。

コードを書く速度だけじゃない

AIの活用範囲は、もはやプログラミングだけに留まらない。

  • 企画書の叩き台作成
  • 議事録の要約
  • メールの文章チェック
  • プレゼン資料のアイデア出し
  • データ分析の方向性検討
  • マーケティング戦略の考察

これらすべてで、AIを使える人と使えない人では圧倒的な差が生まれている。

まだ間に合う、でも急げ

幸い、今はまだ過渡期だ。「AIを使えない人」でも、まだギリギリ社会で働いていける。でも、この状況がいつまで続くかは分からない。

3年後、5年後の採用面接を想像してみてほしい。

「AIは使えません」 「何か宗教的な理由でもあるんですか?」

こんな会話が普通に交わされるようになるかもしれない。

では、どうすればいいのか?

まずは触ってみることだ。ChatGPT、Claude、Gemini、なんでもいい。日常の小さなタスクからAIに任せてみる。

  • 長いメールの要約を作ってもらう
  • 会議の議事録を整理してもらう
  • アイデア出しのブレインストーミング相手になってもらう
  • 英語の文章をチェックしてもらう

慣れてきたら、もう少し複雑なタスクも任せてみる。

重要なのは、AIを「完璧な答えを出してくれる魔法の箱」として期待しないことだ。AIは「めちゃくちゃ有能だけど、時々間違えるアシスタント」として付き合うのが正解だ。

インフラ化の波に乗れ

電気が普及した時、それを活用した企業が勝った。インターネットが普及した時、それを活用した企業が勝った。

AIのインフラ化も同じだ。

個人レベルでも、組織レベルでも、AIを使いこなせるかどうかで明確な競争優位が生まれている。

最後に

15年前、「スマホなんて仕事に必要ない」と言っていた人たちがいた。10年前、「クラウドなんて危険だ」と言っていた人たちがいた。

そして今、「AIなんてまだ実用的じゃない」と言っている人たちがいる。

歴史は繰り返す。新しい技術がインフラになる時、それを受け入れた人と拒否した人の間には、埋めがたい差が生まれる。

AIはインフラになる。もうすでになりつつある。この波に乗り遅れないためにも、今すぐにでもAIとの付き合い方を学び始めるべきだ。

関連記事


icon-loading

ハルシネーションは敵か味方か – 創造性を加速するAIの取扱説明書

生成AIのハルシネーションを正しく理解し、temperature・top_p・プロンプトで出力を制御する実践法を解説。gpt-5の抑制傾向、人間の創造性やSFが技術革新に与えた影響、ポストイットとペニシリンの発明エピソードまで網羅する。

icon-loading

LLMを変えた分岐点:「Attention Is All You Need」とTransformerの前後比較

論文「Attention Is All You Need」が提案したTransformerは、AIの文章理解と生成を根本から変えた。本記事では、その仕組みと前後比較をビジネス視点で解説し、なぜ今この技術を知ることが戦略的メリットになるのかを明らかにする。

icon-loading

イーロン・マスク第一弾 – テスラの自動運転戦略:ウェイモとの決定的な違いとLiDAR不要論

イーロン・マスク率いるテスラの自動運転戦略を解説。ウェイモとのセンサー構成の違い、LiDAR不要論、トップダウン経営による大胆な方針転換、そして完全AI制御への移行までを網羅。長期的にはロボット「オプティマス」との連携を視野に入れたテスラが有利とする理由を探る。

icon-loading

10km先のエロ本からGrokのSpicy Modeへ – 性欲がテクノロジーを進化させる

性欲は人類最強の技術普及ドライバーである。VHS普及からGrokのSpicy Modeまで、アダルトが牽引してきたイノベーションの歴史と、AI時代における性欲とテクノロジーの新たな関係性について、IT企業CEOが実体験を交えて解説。