2025/05/23

AIを使えない人=ダメなマネージャー

目次
  1. AIは使えないという人たち
  2. 「使えない」の正体を探ってみる
  3. 問題はAIじゃなくて、使う側にある
  4. これはダメなマネージャーのパターンと全く同じ
  5. AIは史上最強の部下かもしれない

AIは使えないという人たち

「AIなんて全然使えない」

最近、こんな声をよく聞く。ChatGPTが世間を騒がせて、みんな一度は触ってみたものの、思ったような結果が出ずに「やっぱりダメだ」と諦めている人が想像以上に多い。

「使えない」の正体を探ってみる

実際に「AIは使えない」と言っている人たちに、どんな使い方をしたのか聞いてみると、なかなか興味深い話が出てくる。

ケース1:企画書作成

「ChatGPTに『新商品の企画書を作って』って言ったら、どこにでもありそうな薄っぺらい内容しか出てこなかった」

ケース2:プログラミング

「コードを書いてもらったけど、エラーばっかりで全然動かない。結局自分で最初から書き直した」

ケース3:文章作成

「メール文面を考えてもらったら、硬すぎて使い物にならなかった」

確かに、これでは「使えない」と感じるのも無理はない。問題はどこにあるのか?

問題はAIじゃなくて、使う側にある

「使えない」と言っている人たちには、共通した特徴がある。

各AIの得意・不得意を知らない

まず、AIツールそれぞれの特性を理解していない。ChatGPTは創作や対話が得意だが数値計算は苦手。Claudeは長文の分析や論理的思考に長けている。Geminiは画像解析やGoogleサービスとの連携が強い。

こういった基本的な特徴を知らずに、すべてのAIに同じことを求めている。これって、野球選手にサッカーをやらせて「使えない」と言っているようなものである。

指示が圧倒的に足りない

そして最も大きな問題が、指示の出し方だ。

情報が全然足りない

「新商品の企画書を作って」と言うだけで、どんな商品なのか、ターゲットは誰なのか、予算はいくらなのか、競合はどこなのか、一切教えていない。

これって、部下に「何か良い企画を考えといて」と丸投げするのと同じである。そんなことをしたら、どんなに優秀な部下でも困ってしまうだろう。

求める成果物が曖昧

「良い感じの資料を」「使える企画書を」といった、何を求めているのかよくわからない指示。いつまでに、どんな形式で、誰に向けて、何ページぐらいで、どのレベルの詳しさで、といった具体的な要求が一切ない。

一発で完璧を求めすぎる

そして、一回やってみてうまくいかないと、すぐに「やっぱりダメだ」と結論づけてしまう。でも、新入社員だって最初からいきなり完璧な仕事はできないだろう。何回かやり取りして、だんだん求めているものに近づけていくのが普通である。

これはダメなマネージャーのパターンと全く同じ

これは「部下が使えない」と愚痴っているダメなマネージャーと全く同じパターンだ。

優秀なマネージャーは必ずこれをやっている:

各人の特徴を把握して適材適所で使う
Aさんはデータ分析が得意、Bさんは顧客対応が上手、Cさんは細かい作業に集中できる。それぞれの強みを活かせる仕事を振る。

必要十分な情報を最初に渡す
背景、目的、制約条件、期待するクオリティ、参考資料など、仕事に必要な情報をきちんと整理して伝える。

明確で具体的な指示を出す
いつまでに、どんな形で、誰に向けて、何を達成するために、どのくらいの分量で。曖昧さを残さない。

段階的にブラッシュアップする
最初からいきなり完璧を求めず、途中でフィードバックを出しながら、だんだん理想に近づけていく。

逆に「部下が使えない」と言っているマネージャーは、部下の特性を理解せず、曖昧な指示を出して、一発で完璧を求める。

つまり、「AIが使えない」と言っている人は、活躍できないマネージャーとまったく同じことをやっているのである。

AIは史上最強の部下かもしれない

AIは理想的な部下の条件をほぼ満たしている。

24時間365日稼働可能
夜中でも週末でも稼働し、体調不良で休むこともない。

膨大な知識を持っている
世界中の書籍、論文、記事、コードを学習している。一人の人間が一生かけても得られない知識量。

複数の専門分野をカバー
医師国家試験に合格し、数学オリンピックの問題を解き、何十ヶ国語も操る。プログラミングから文章作成、データ分析まで幅広くこなす。

こんな条件の部下がいたら、普通なら「優秀すぎる」と言うだろう。なのに「使えない」と言ってしまうのは、結局のところ使う側の問題なのである。

関連記事


icon-loading

Sora 2:物理法則を操るAIがもたらすディープフェイクの民主化

Sora 2は従来の映像生成AIを超え、物理法則を再現することでリアルな映像を生み出す。Cameo機能を使えば、わずか10秒の動画で誰でもディープフェイク映像の主役になれる。本記事ではSora 2の技術的特徴と、ディープフェイクの民主化がもたらす可能性とリスクを解説する。

icon-loading

LLMが賢くなった方法:穴埋め問題を永遠に解いたAIの進化

大規模言語モデル(LLM)は国語の穴埋め問題を無限に解き続けることで賢くなった。さらに画像生成も同じ仕組みで進化。GoogleやMeta、中国企業がデータを握りAI開発で有利になった背景を解説する。AIはまだ序章にすぎない。

icon-loading

6年間で小学生AIが博士号AIへと成長、その一方で「寄り添う大学生AI」が恋しい人類

AIはわずか6年で小学生レベルから博士号レベルへと進化した。スケール則に裏付けられた指数的成長は、2030年前後にノーベル賞級の発見をもたらし、自己改善による加速時代を迎える可能性がある。一般ユーザーに寄り添う大学生AIと、ビジネスを変革する博士号AIの違いを解説する

icon-loading

データは新たな石油、でも精製しないとただのドロドロ?

AI時代の「データは新たな石油」というフレーズの本当の意味を解説。石油大国の投資事例やイリヤ・サツケヴァーの発言、データ精製・合成の重要性まで、AIを使いこなすための実践的視点を紹介します

icon-loading

議事録AIと固有名詞の戦い:「やましたとしちか」問題

現在のGruneで運用している議事録AIの実装方法と、日本語特有の同音異義語問題への対処法を詳しく解説。LINE WorksのAI NoteとNotebookLMを活用した具体的な運用手順と、固有名詞リストを活用したプロンプト設計のコツを、実際の運用経験をもとに紹介。

icon-loading

原子爆弾からAIへ:アメリカが世界を制覇する投資戦略

日本企業のAI投資が米国の1%という衝撃的事実から、アメリカの歴史的投資姿勢、ウクライナ戦争で実証されたAI技術の重要性まで、企業存続に必要なAI投資の緊急性を解説。量子コンピューターを含む次世代技術への投資が企業の命運を分ける理由とは。