2025/05/21

LLMの秘密:「次の言葉を予測するだけ」で人間のように振る舞う技術

目次
  1. ChatGPT(LLM)の仕組み:次の言葉を予測するだけ
  2. チートシステムなのか?
  3. 人間の会話も似たようなもの?
  4. AIを理解することは、自分を理解すること

ChatGPT(LLM)の仕組み:次の言葉を予測するだけ

ChatGPTやClaudeなどのAIは大規模言語モデル(LLM: Large Language Models)と呼ばれる。AIを使いこなす側にまわるためには、基本的な仕組みを理解して、どのようなことが得意なのか苦手なのかを知る必要がある。

LLMの中核となる技術は「トランスフォーマー」と呼ばれるニューラルネットワークの構造である。これはGoogleの研究者たちが2017年に論文「Attention is All You Need」で発表したもので、現在のAI革命の基盤となっている。

基本的な動作原理は次のとおり:

  1. トークン化:テキストを小さな単位(トークン)に分割する。英語ならおおよそ単語や部分的な単語、日本語なら文字や短い単語のかたまりである。
  2. 埋め込み:各トークンを数百次元の数値ベクトルに変換する。これにより、似た意味の言葉は近い位置にマッピングされる。
  3. 自己注意機構(セルフアテンション):文脈を理解するための仕組みで、各トークンが文章中の他のトークンとどれだけ関連しているかを計算する。これにより、「彼」が誰を指しているかなど、文脈の理解が可能になる。
  4. 予測:文脈を踏まえて次に来る可能性が高いトークンを予測する。

小難しく見えたかもしれないが、要するに、「適当に次の言葉を選んでいるだけ」なのである。

つまり、 人間:「今日の天気は」 LLM:「晴れです」(「天気」の後に「晴れ」という単語が来る可能性が高いと学習している)

のように、「この言葉の次にはこの言葉が来る確率が高い」というパターンを抽出して、書いているだけなのである。

ここでは非常に単純化して書いているので、もう少し詳しく知りたい人は、「ChatGPTの頭の中」を読んでみてほしい。非エンジニアの人にもわかりやすく書かれている。

チートシステムなのか?

この仕組みを知ったときに、「適当に次の言葉を選んでいるだけ?特に内容を理解して話しているわけでない?こんなの思考もしていないチートシステムではないか」と多くの人が感じると思う。僕自身もそう感じた。

人間の会話も似たようなもの?

この仕組みを知ったあとに、人とする会話を思い起こしてみる。もしくは、会話をしながら自分はどのように話す言葉を決定しているかを観察してみる。そうすると、文書を書くときのように全体の骨子、展開をしっかり決定してから順を追って話しているわけではないことに気づく。つまり、「文脈に応じて、適当に次の言葉を紡いでいるだけ」。LLMと人間がやっていることは実は大した差がない。

AIを理解することは、自分を理解すること

そう考えると、AIって単なる便利ツールじゃなくて、私たち自身の言語能力や思考プロセスを理解するための鏡みたいな存在なのかもしれない。「理解するって何?」「考えるって何?」っていう、昔からある哲学的な疑問に、テクノロジーの側面から迫れる時代になったわけである。

実際、AIと会話していると「こいつ、本当に理解してるのかな?」って疑問に思うことがある。でも同時に、「じゃあ自分は本当に理解してるって言えるのか?」って自分自身にも疑問が湧いてくる。脳内で電気信号が飛び交っているのと、AIがデータをパターン認識しているのと、本質的にはどう違うんだろう?みたいな。

結局、大事なのはこの仕組みを知った上で、AIとうまく付き合っていくことである。AIが得意なこと、苦手なことを理解したうえで使いこなせば強力なパートナーになってくれる。

関連記事


icon-loading

マッチングアプリの右スワイプの裏側:AIがヒトの繁栄まで操る時代が始まった

AIがマッチングアプリを通じて人間の恋愛から種の繁栄まで操る時代が到来。TinderのVecTecアルゴリズムから完全自律型AIナンパシステムまで、AI vs AIの代理戦争が始まった現状をIT企業CEOが実例を交えて解説します。

icon-loading

議事録AIと固有名詞の戦い:「やましたとしちか」問題

現在のGruneで運用している議事録AIの実装方法と、日本語特有の同音異義語問題への対処法を詳しく解説。LINE WorksのAI NoteとNotebookLMを活用した具体的な運用手順と、固有名詞リストを活用したプロンプト設計のコツを、実際の運用経験をもとに紹介。

icon-loading

24時間365日のAIテレアポに漂うディストピア感

24時間365日稼働するAIテレアポサービスの登場で浮き彫りになった技術の光と影。社会リソースの無駄遣いからAI vs AIの不毛な戦争まで、IT企業CEOが語るAI技術の適切な使い方と未来への警鐘。

icon-loading

SEO対策は無駄に?GAIO/LLMOの対策が必要?ただ最後はどうなるのか

Google AI Overviewによる検索の根本的変化を分析。CTR最大56%減少の実データと、GAIO/LLMO等の新戦略を解説。しかし「AIに選ばれる」ことに本当に意味があるのか?従来のWebマーケティングモデルの限界と今後の展望をAI企業CEOが考察。

icon-loading

AIフレンドリージャパニーズとシンプリファイドイングリッシュ

AI音声入力と議事録自動化の実践から見えた、日本語特有の同音異義語問題とその対策について解説。シンプリファイドイングリッシュを参考にした「AIフレンドリージャパニーズ」の考え方で、機械にも人間にも理解しやすいコミュニケーション手法を提案。AI時代の新しい働き方のヒントが満載。

icon-loading

Duolingo炎上から考える:産業革命時の織工にならないために AIファーストの時代にどう生き残るか

語学学習アプリDuolingoのAIファースト宣言が大炎上。しかしこれは200年前の産業革命時に起きたラッダイト運動と同じ現象では?機械を壊すか使いこなすか。AI時代を生き抜くために必要な「適応力」について、IT企業CEOが現実的な視点で解説します。