2025/05/21

LLMの秘密:「次の言葉を予測するだけ」で人間のように振る舞う技術

目次
  1. ChatGPT(LLM)の仕組み:次の言葉を予測するだけ
  2. チートシステムなのか?
  3. 人間の会話も似たようなもの?
  4. AIを理解することは、自分を理解すること

ChatGPT(LLM)の仕組み:次の言葉を予測するだけ

ChatGPTやClaudeなどのAIは大規模言語モデル(LLM: Large Language Models)と呼ばれる。AIを使いこなす側にまわるためには、基本的な仕組みを理解して、どのようなことが得意なのか苦手なのかを知る必要がある。

LLMの中核となる技術は「トランスフォーマー」と呼ばれるニューラルネットワークの構造である。これはGoogleの研究者たちが2017年に論文「Attention is All You Need」で発表したもので、現在のAI革命の基盤となっている。

基本的な動作原理は次のとおり:

  1. トークン化:テキストを小さな単位(トークン)に分割する。英語ならおおよそ単語や部分的な単語、日本語なら文字や短い単語のかたまりである。
  2. 埋め込み:各トークンを数百次元の数値ベクトルに変換する。これにより、似た意味の言葉は近い位置にマッピングされる。
  3. 自己注意機構(セルフアテンション):文脈を理解するための仕組みで、各トークンが文章中の他のトークンとどれだけ関連しているかを計算する。これにより、「彼」が誰を指しているかなど、文脈の理解が可能になる。
  4. 予測:文脈を踏まえて次に来る可能性が高いトークンを予測する。

小難しく見えたかもしれないが、要するに、「適当に次の言葉を選んでいるだけ」なのである。

つまり、 人間:「今日の天気は」 LLM:「晴れです」(「天気」の後に「晴れ」という単語が来る可能性が高いと学習している)

のように、「この言葉の次にはこの言葉が来る確率が高い」というパターンを抽出して、書いているだけなのである。

ここでは非常に単純化して書いているので、もう少し詳しく知りたい人は、「ChatGPTの頭の中」を読んでみてほしい。非エンジニアの人にもわかりやすく書かれている。

チートシステムなのか?

この仕組みを知ったときに、「適当に次の言葉を選んでいるだけ?特に内容を理解して話しているわけでない?こんなの思考もしていないチートシステムではないか」と多くの人が感じると思う。僕自身もそう感じた。

人間の会話も似たようなもの?

この仕組みを知ったあとに、人とする会話を思い起こしてみる。もしくは、会話をしながら自分はどのように話す言葉を決定しているかを観察してみる。そうすると、文書を書くときのように全体の骨子、展開をしっかり決定してから順を追って話しているわけではないことに気づく。つまり、「文脈に応じて、適当に次の言葉を紡いでいるだけ」。LLMと人間がやっていることは実は大した差がない。

AIを理解することは、自分を理解すること

そう考えると、AIって単なる便利ツールじゃなくて、私たち自身の言語能力や思考プロセスを理解するための鏡みたいな存在なのかもしれない。「理解するって何?」「考えるって何?」っていう、昔からある哲学的な疑問に、テクノロジーの側面から迫れる時代になったわけである。

実際、AIと会話していると「こいつ、本当に理解してるのかな?」って疑問に思うことがある。でも同時に、「じゃあ自分は本当に理解してるって言えるのか?」って自分自身にも疑問が湧いてくる。脳内で電気信号が飛び交っているのと、AIがデータをパターン認識しているのと、本質的にはどう違うんだろう?みたいな。

結局、大事なのはこの仕組みを知った上で、AIとうまく付き合っていくことである。AIが得意なこと、苦手なことを理解したうえで使いこなせば強力なパートナーになってくれる。

関連記事


icon-loading

Sora 2:物理法則を操るAIがもたらすディープフェイクの民主化

Sora 2は従来の映像生成AIを超え、物理法則を再現することでリアルな映像を生み出す。Cameo機能を使えば、わずか10秒の動画で誰でもディープフェイク映像の主役になれる。本記事ではSora 2の技術的特徴と、ディープフェイクの民主化がもたらす可能性とリスクを解説する。

icon-loading

LLMが賢くなった方法:穴埋め問題を永遠に解いたAIの進化

大規模言語モデル(LLM)は国語の穴埋め問題を無限に解き続けることで賢くなった。さらに画像生成も同じ仕組みで進化。GoogleやMeta、中国企業がデータを握りAI開発で有利になった背景を解説する。AIはまだ序章にすぎない。

icon-loading

6年間で小学生AIが博士号AIへと成長、その一方で「寄り添う大学生AI」が恋しい人類

AIはわずか6年で小学生レベルから博士号レベルへと進化した。スケール則に裏付けられた指数的成長は、2030年前後にノーベル賞級の発見をもたらし、自己改善による加速時代を迎える可能性がある。一般ユーザーに寄り添う大学生AIと、ビジネスを変革する博士号AIの違いを解説する

icon-loading

データは新たな石油、でも精製しないとただのドロドロ?

AI時代の「データは新たな石油」というフレーズの本当の意味を解説。石油大国の投資事例やイリヤ・サツケヴァーの発言、データ精製・合成の重要性まで、AIを使いこなすための実践的視点を紹介します

icon-loading

議事録AIと固有名詞の戦い:「やましたとしちか」問題

現在のGruneで運用している議事録AIの実装方法と、日本語特有の同音異義語問題への対処法を詳しく解説。LINE WorksのAI NoteとNotebookLMを活用した具体的な運用手順と、固有名詞リストを活用したプロンプト設計のコツを、実際の運用経験をもとに紹介。

icon-loading

原子爆弾からAIへ:アメリカが世界を制覇する投資戦略

日本企業のAI投資が米国の1%という衝撃的事実から、アメリカの歴史的投資姿勢、ウクライナ戦争で実証されたAI技術の重要性まで、企業存続に必要なAI投資の緊急性を解説。量子コンピューターを含む次世代技術への投資が企業の命運を分ける理由とは。